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large problems the solution of the large set of linearized
.V- equations may be a formidable task - often consuming more than

half of the computing effort. when performed by a direct method
based upon Gauss elimination. Accordingly, it is of consider-
able importance to investigate alternative methods to solve the

* - problem. The present study presents results obtained by using
-" Preconditioned Conjugate Gradient Method (PCG) described in
[7] and a Preconditioned Lanczos Method (PLM) described in [6]

- to solve a variety of numerical examples. Based upon results
obtained it is evident that a significant reduction in overall
effort, compared to direct 5olutions, may be achieved using the
preconditioned methods.
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1. Introduction

The finite element method of discretization is used to reduce many complex conutinum

problems to discrete systems. Although this reduction is the most important step in the owerall

analysis ol a structure, solving the resulting discrete problem is often far from trivial. In gen-

eral. the reduced system is nonlinear and an iterative method must be employed to arri%.,: at the

solution. Most solution methods are based on some form of Newton's method in which the

nonlinear problem is linearized, using an initial approximation, to arrive at a linear set of simul-

taneous algebraic equations. The solution of the set of linear equations leads to a correction of

the initial approximation. When solving the linear equations, one should not loose sight of the

primary obiective. solving the nonlinear problem.

Iterative methods, such as the conjugate gradient or Lanczos method, are among the

many methods that may be used to solve systems of linear equations. The advantage of these

methods, when used as the inner loop of the Newton iteration, is twofold.

(i) ihe linear equation may be solved to any desired level of accuracy as governed by the

Newton iteration.

(i) A considerable reduction in storage can be achieved when no triangular factorization need

be performed.

In 161 a method was developed, based on the preconditioned Lanczos method, to realize

some of the advantages of iterative methods. In this previous study, the triangular factors of

the initial tangent matrix were used to form a preconditioning matrix for the subsequent solu-

tion steps In the present study we have eliminated factorizations by employing other precondi

tioners and further. have reduced the storage needs of the method Accession For
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2. A Preconditioned Conjugate (radient Method

An essential step in nonlinear analysis of structures using Newton's method (or a variant

such as modified Newton or quasi-Newton methods) is solving it linear system ol algebraic

equations. The preconditioned conjugate gradient method (hereafter called PC(J) is one of the

many procedures for solving

r -b Ax=0 021I

where A is an n x n symmetric positive detinite matrix (which for finite element calculations is

sparsely populated) and b is the right-hand side vector. In the case of static analysis, A is the

current tangent matrix and in the case of dynamic analysis, A depends on the mass, daml'ping

and tangent stiffness matrices, as well its the time increment.

The initial popularity of the conjugate gradient method was due to a number of factors.

In exact arithmetic the method required a maximum of n iterations to solve (2.1) which made

the method superior to other iterative methods. In fact conjugate gradient is in the class of

semi- ivrative methods which also includes the Lanczos algorithm U1. The disadvantage of

direct methods is their large storage demands for keeping the factors of A. The only interface

between the conjugate gradient method and A is through the product Av for a given vector v.

This is an elegant way of taking advantage of sparsity of A which has the added advantage that

A need not be known explicitly but onl., a means of computing the matrix-vector product is

required

The popularity of the conjugate gradient method vanished once it was found that under

'erlilln con diliions th met h id required as many as Sn or 6n steps to reduce the residual to the

de,,red Ic,,el. I his degradation is duc to the strong influence of round-off error.

Ihe ddition of preconditioning eliminated this difficulty. Instead of solving (2 1) we

olve

11 !Ax P 'b 422

for some iipproprimitc ,.hoice of P [hC obtcct then is to choose P such that the coeflicient

matrix M' (2,2) is %tll condioned
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Theoretical considerations suggest that at the end oI each iteration of CGI the residual

norm is reduced by a factor when solving (2.1) where K is the condition number of A."V'K +

defined by K HAi IA II. See [I] for more details. Note tht when K = I. one iterio I,

sufficient to solve the equation. This provides us with a guideline for choosing P. For a well

chosen P only a few iterations reduce the residual norm to the desired level. Here we gine an

outline for the preconditioned conjugate algorithm:

(liven an initial guess x,, a positive delinite preconditioning matrix P. the matrix A and the

right hand side b:

(1) Set p,- r,, -- b Ax1,

(2) Soke Pd, - r ,. for d,,

(3) 10r A - 0. I. 2, until convergence do

(it) o, (r,,d,)/'(pA,Ap )

(c) r, .1 = r. -(tApA

(d) Solve I'd r,1

(e) 3, (r,..d , )/(rA,dA)

(D) lPi. =d, I 1-pA

The operation (v,u) denotes the inner product v u. This algorithm generates a sequence

of approximations to the solution x with a corresponding residual vector rA. The termination

criterion can he choen based on these quantities. In addition to storage demands for A and P

the algorthni require-, storage for 4 vectors. The total number of operation per iteration is

\ f N/ f' A5.\, where .\/.I and NZ/I are the number of operations for forming Au and

P 1v for a given n and %



3. Splitting Methods

Next we turn 'o a topic which at first sight may seem unrelated to the solution of non-

linear algebraic equations. Consider the system of first order differential equations

= f(x, ) (3.1)

where x is an n-dimensional vector, the superposed dot, ( ), denotes differentiation with

respect to time and f is a function of the unknown vector x and t.

We consider a special form of' f which can be written as a sum of its subcomponents f

f-= (3.2)

Under these conditions the original problem can be thought as a sum of s subproblems

' = f,(xt) i = S ..... s (3.3)

In the case of finite element discretization of the spatial domain the sum in (3.2) ranges over

the elements or a set of elements. In other cases the splitting may be formed by other means.

one of which is demonstrated in the following section.

- , A consistent algorithm for the solution of (3.1), based on the notion of a splitting tech-

• "nique 121, can now be constructed as a product of algorithms for the sub-problems. In other

* .words, write the algorithm for (3.3) as

X... [ ,, (3.4)

where S'' is an operator denoting the algorithm and the index m ranges over the increment in

time, h. Then the algorithm for (3.1 can be written as

. :I I x .. .1=l , , ( 3 .5 )

" "where

One of the disadvantages of the splitting method is its low accuracy. The best that these

methods tan ichieve is second order accuracy. That is the truncation error is of the order of t,&

a( best In the sequel we will use the above procedure to construct a preconditioning matriN for

the coniugate gradient algorithm described in section 2. The inherent inaccuracy of the splitting
C,..

9-o,

't ' :.m. ,* . * * * . . *. %%,V%! ~



V . method poses no problem since the algorithm is used only as a preconditioner and therefore

one can obtain very high accuracies through the conjugate gradient iteration.
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4. Solution of Static Problems

Consider the system of linear first order differential equations

ri + Ax=b (4 

where is a given parameter. Formally the solution to equation (4. 1) is

x(t) - c 1x1 -- A 1b) + A 'b (4.2 1

where x,) = x(O), is an initial condition. We observe from (4.2) thet as t ends to infinit. xt )

converges to the solution of (2.1) for r > 0. Consiquently (4.1) may be utilized to solve the

linear equations (2.1). Indeed this approach has been suggested previously (e.g., see 191). In

" * general the exponential of a large matrix cannot be easily computed and a numerical solul )

(4.1) must be used. In order to achieve a soluion of (2.1) the numerical solution to (I must

* be assymptotically correct for infinite h, or a very large number of time steps must i to

compute the solution at infinite time. Here we are not concerned with constructing an accurate

solution to (4.1), rather we consider the method as a means of constructing a suitable precondi-

tioning matrix for the conjugate gradient algorithm described above.

Splitting methods may be applied to any problem of the form

- = Bx (4.3)

where B is an additive operator defined by

B= - B, (4.4)

such that the equations

= B,x i= !.s 4.5)
are significantly easier to solve than the original equations. The time stepping algorithm for the

global problem is then the product of all the time stepping algorithms for the subproblems with

a fractional time step h/s 121.

The coeticient matrix A in (2.1) may be written as the sum of its diagonal matrinx. 1), a

strictly lower triangular matrix, L, and a srictly upper triangular matrix such that

A = (12D 4- L) + VA/2D + L) (4.6)
The associated suhproblems, i - -(12D + L)x and i = -(4D 4 L' )% can be solved easily.

0z
U-? . . . . ...... . . .



.i .* Applying a backward difference method with a time step h/2 to each of the suhproblems. %c

arrive at

X, I+ (1) + 21) 11± ±(D + 2L (-b x,~ (4.-_. ,4T 4T 2 -r I

where x,, is an approximation to x(mh). For an initial condition x) 0 we get an approxima-

-. tion to x t1)

/ III- 1! (D + 2L1) 1 + --(D 4 212 1 lb

which is compared to the exact solution

x(h) - Ar jA b (4.9)

Comparing equations (4.8) and (4.9) suggests that the coefficient matrix in (4.8) may be a good

iapproximation to A 1 for large I, and may therefore be an effective preconditioning matrix.

The scalar factor may be ignored for preconditioning purposes.

When using (4.8) in conjunction with the conjugate gradient algorithm of section 2 the

.. preconditioning matrix becomes

P - (I + (o/2D +t l)(! + o/2D 4 (oLt) 4.10)

where co =h/2 is now a free parameter.

To simplify the choice of to we scale the stiffness matrix A such that diagonal of A is

unity. The resulting matrix is A = D "AD The system of equations (2.1) now becomes

A i (411)

where x 1) x and 1 ) 'b.

I he preconditioned matrix must now he applied to (4 II) resulting in

S (I f( o )(1 4 (lo ) 14 121

where A I. L' . It is easy to show that preconditioning (4.11) using P is equival.rt it)

prek-oninolt(nirlg (2.1I) with

P (D + tll) I(D + telo) (4.13)

This can he identified as a member of the class of incomplete Choleski preconditioners 131.

.... . . . . . ...,. . . ... ... .. . - .- . . .-
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Note that when w = 0, P becomes the diagonal matrix D, resulting in the simplest form ol"

preconditioning* diagonal scaling. When I then 11 A f LI) '11I where we note that Ih.

error matrix iD L is rank deficient since L has zero diagonals. If the norm of D is larger

then the norm of L then the norm of the error matrix will be small compared to the norm of

A. consequently, for most problems it is expected that the optimum w will be close to uit%

-4.
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5. Solution of D~ynamnic Problems

We next construct a preconditioning matrix for the linear system of' equations arisilig in at

step-by-step algorithm for dyvnamic analYsis of' linear and nonlinear structures. In particukir. %4e

consider the Newmark algorithm and the preconditioning matrix follows from the splitting

method of section 3, in much the same way' ats for the static problem.

Consider the linearized equations of' motion

MWi ku = f )
where M is the diagonal mass matrix, K is the stiffnes., matrix, f is the external load Vettor and

Su is the response ol' the structure. For 'sinplicio . we ignore damping effects, however. aNl of

the f'ollowing results may he extendedl easily to the damped case. Accordingly, the linearized

j system of' equations arising at every time step of' the Newmark method is

A b.5.2

where

A~ K-I -4 -M (5 3-
O3A

and

b f, -. 4 Mju, A Alv, 4I (/2- )At~a, (.)

Here atid a are velocity and acceleration vectors, respectively. At is the specified time incre-

mient, tis the time ind] x is now- the increment of displacement response. The Newmark

*parameters are chosen such that I3 - ('/2 -4 Y) 2/4 with -y >- /2 which ensures unconditional

locali stabiliy. Trhe discretizations in time are

u, u, Atv.-i 4-'!:API NI -- 2/3)a, 4 2/3a,A,1(5)
*, + Al H y)a, 4 -yA/a, 61

I he object is to solve (5.2) without forming the factors of A.

A splitting method similar to the one used for equation (4. I can now be applied to e(tia-

l ion (5.1). The matrix resulting from the splitting algorithm can then he used as a precondi-

tionet for (S.2) (Infsidei

0.
%, %%



P (1.+ - )N '(I' -- M) (5 7)

where K L [. Multiplying out the terms in (5.7), we obtain

P,- J3A 2LM VL + L + ' + ,M]

1 IW-%A)I.M 'L f Al

.= . I [EIAt2) + A] (5.8)

where E(Ar2 ) -- IALM 11, .

The preconditioned conjugate gradient algorithm of section 2 is invariant under the scaling

of the preconditioning matrix; therefore, (5.8) shows that P will tend quadratically to the

dynamic stiffness matrix A as the time step diminishes. In other words, E tends to the zero

matrix quadratically in At. We see later that this characteristic results in an effective precondi-

tioning and the solution of equation (5.2) is obtained in very few iterations of the precondi-

tioned conjugate gradient algorithm.

0...

'S

.,

4 "
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6. lanczos Algorithm for Solution of the Linearized Problem
,-'

The discretization of nonlinear structural mechanics problems and linearization oI the

resulting nonlinear algebraic equations for application of a Newton type methods normall. "III

lead to a symmetric system of linear algebraic equations, (2.1).

In Section 2 we described the use of the conjugate gradient method to solve the linear

system of equations. In this section an alternative solution technique, a simple L-anczos

method, is presented

Iterative mcthods often have been used in numerical analysis for the solution of' large sys-

temns of Cquations ihe Conjugate (iradient method is one such technique introduced in 1")2

b. tlestene,, and Stiefel 141. In the same year Lanczos published his method of minimized

iteration which %,is initially introduced for computing the eigen pairs of a large symmetric

matrix. I nczos and Householder 151 pointed out the intimate connection between the two

approaches. These methods have several attractive features in common. There is no need for

A to !iave further special properties, such as handed form, no acceleration parameters have tz

be estimated, and the storage requirements are only a few n-vectors in addition to the storage

needs ot A.

6.1. ihe l.anczo, Algorithm

lFor tcertain applicalions of the finite element method, especially in nonlinear problm-,. !t

is usual to have on hand an initial approximation x" to the true solution of 2.1. The problem is

now to find a correction x to be added to x". Then

Ax r0  lb.l)

where

b Ax-'

Ihe Lan/.os algorithm may be described very simply as a process of constructing the %cak

Sform of Cuation 2.1 I rm a very special subspace. The subspace under consideration k, gen-

r eraiel tron the set of' , ,c'tors ( r,. Ar , A' r ,. known ;is t 'ic Krylov suh, o .k'c Ii I.

.1g%
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lo construct the wkeak form it would be simpler if an orthonormal set of '.ectors. Say

(q~2 ,q), were available. This can be achieved by applying Gram-Schmidt orthogonaliza-

tion to the Krvlov vectors. Initially, this appears to be an expensive way of obtaining an ortho-

* normal base vectors, however this process can be simplified when the following two 1acts are

used [101:o

~.-0.*(i) The use of Aq, and A'rf-), for orthogonalization against the previous q vectors and normal-

ization of the resulting vector, leads to the same vector q,,

(n)~ The vector Aq, is orthogonal to ql,,q2, .,2

Consequently it is sufficient to orthogonaliie Aq, against q, and q, to obtain the next orthog-

onal vector. Accordingly,

/3,q, iAq, q f3 - q, 63)

where a q/'Aq and j3 -q,' Aq,. It is important to note that the vectors (ql,q12, .q,.2

are not needed in equation 6.3 This defines one step of the simple Lanczos algorithril The

normalization of r, results in q, 1. It is easy to show, by looking at q/, 1r, that J3,, 1I 1r. 11.

I.-> The special choite for the base vectors of the subspace has an additional advantage. The

projection of A onto this SUbspace is a tridiagonal matrix, T,

'n 32
13 ( 2 133

-~T,' Q,/AQ,= 13 (6.4.'

/3, a

where the q vectors form the columns of' the matrix Q,~ Q, (ql,q 2, ,q). This fact %kas

* realized soon after Lanczos introduced his method and the algorithm was put to use as a pro-

cess for the orthogonal transformation of' a miatrix to tridiagonal form. Despite its additional

attriictions. I he Lanc/os process gave way to Giivens' method in 1954 and tei to

* Householder's method in 19.58.

Flie iela~tiotlhips that (leline the simiple Linezos algorithm can nlow be sumnmaried iv the

-. - %pk
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following three equations.

Q'Q, ( , (6 5.a)

AQ, - Q,T, -r,e/
Q/r =0 (6.5.c

where e, is the ./-th column of the jxj identity matrix I,. Setting qO = 0 and using r, as the

starting vector, the Lanczos algorithm may then be described as

Given r., set -- roll, for j1 1,2,. repeat

1) q,.-

(2) u, - Aq,

(3) r, u -ji,q,

(4) 0 Q," r,

(5) r, -r - q

(6) 13,1 - - 11r,11I

While a direct use of the simple Lanczos algorithm usually leads to numerical difficulties,

thus requiring some reorthogonalization of the vectors, with care in selecting the precondition-

ing matrix these difficulties are avoided. In our test of the algorithm to date no difficulties have
4.

been encountered in using the simple preconditioned Lanczos algorithm (see Numerical Exam-

pies).

S..

..

6 %
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I ° "7. Modification to the FEAP Program.

The finite element computer program FEAP is described in Chapter 24 of Zienkiewicz

[131 and forms the basis for all computations performed as part of the current effort. Several

basic modifications have occurred since the original program was published. These include: (a)

replacement of the original subprograms ACTCOL and UACTCL for the direct solution of

linear algebraic equations for symmetric and unsymmetric problems, respectively, by the single

solver DASOL which is probably the most efficient implementation of a variable band. active

column equation solver available today for virtual memory machines; (b) inclusion of the New-

mark method to integrate the equations of motion for linear and nonlinear problems in struc-

tural mechanics* Ic) the ability to construct a tangent stiffness matrix and a residual force

simultaineously (instead of using TANG followed by FORM, e.g., see below)- (d) a conver-

gence criteria based upon the current increment in energy (e.g., Ax r); and (e) inclusion of a

general data storage structure for nonlinear materials which require additional information to

the di,,placements in order to evaluate the current stress slate at each integration point in an

element.

In the work reported here the program FEAP has been extended further to include the

capabi. of solving problems using the Preconditioned Conjugate Gradient Method (PC(ior

the Preconditioned Lanczos Method (PLM) described above. In addition, a line search algo-

rithm has been incorporated for use with any of the solution methods - i.e., direct, PCG, or

PN.M. As noted above, the preconditioning matrices require a knowledge of the nonzero terms

in the global tangent stiffness matrix (as well as the mass matrix for dynamics problems). Since

ift is n) nccessar. to iaclor the preconditioning matrix, which would cause fill in the nonzero

*Q ,lirticturc. 4. limc developed ,a dlrect means to construct the array containing the noncro

terms.

The algorithm to construct the locations of the nonzero terms in the compressed tangent

*stiffness m,'rix ma he summarized by the following steps:
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I.) Make a list of the elements which are attached to each node. In FEAP this step is accom-

plished by constructing dynamically dimensioned arrays which will contain only the terms

associated with the actual nonzero structure, so that no storage will be wasted. Accord-

ingly, the first step is divided into two parts - the first to determine dimensioning and the

second to obtain the actual elements connected to each node.

2.) For each nodal degree-of-freedom use the list of elements to find all the other nodal

degree-of-freedoms which are connected. Since we are currently considering symmetric

equations only the terms above the diagonal entry are constructed.

The above two steps have been incorporated into the set of subprograms which are listed

in Appendix A. In FEAP the array of nonzero terms may be constructed by using the macro

command CTAN (compressed tangent stiffness matrix) instead of the usual TANG (note that

there is no equivalent compressed array for UTAN since neither of the preconditioned solvcrs

is programmed to handle unsymmetric equations). Thus a typical Newton iteration using the

PCG il,.!,,orithm is given by the set of macro statements:

LOOP,NEWT, 10
CTAN
FORM
PCG ,LINF.I.,100.
NEXT

where the LOOP for the NEWTon step is to be executed for a maximum of 10 iterations (the

iteration %kill terminate earlier if the prescribed tolerance on energy is met), CTAN indicates a

compressed tangent is to be constructed as described above, and PCG indicates that the Precon-

ditioned Conjugate Gradient algorithm is to he used with LINE search (omit I.IN" it no line

search is dcsired - the current search requires several evaluations of the residual, consequentl

for large problcems may he timc consuming), the I. indicates that the value ol ,, is unit., and

100 is the maximum number of PC(i iterations to be used tn solve the equations \Klfiw\r .

tively, the commands.

o"

W.
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LOOP,NEWT, 10
CTAN, ----, I.
L AN(',I.I N E, I., 100.
NEXT

may be used. The nonzero value on the CTAN instruction indicates that a residual is to be

computed as well as the compressed tangent and is thus equivalent to CTAN and FORM. The

use of LANC instead of PCG indicates that the Lanczos algorithm is to be employed.

N

0l
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8. Numerical Examples

The preconditioned conjugate gradient algorithm (as well as the Lanczos method) has

been tested on a series of test problems. In order to assess the overall efficiency of problem

solution we report both the computing time (for a VAX 11/780 computer operating under

UNIX 4.2 BSD) and storage requirements for the coefficient array. In our test problems we

include two and three dimensional solids subjected to both static and dynamic loading states

Example I. Two dimensional cantilever structure.

The lirst example considered is a cantilever structure with two holes to induce added

stress gradient ellects The model consists (of 225 nodes with 184 4-node plane elements, see

Figure I "7hc miterial is linear elastic and utilizes ELMTOI described in Chapter 24 ol 1131.

For this problem (as well as all subsequent analyses) we perform a solution using the direct

solution of the equations as well as the PCG and Lanczos algorithms. The timing and perfor-

mance of the P((; and Lanczos methods utilized are nearly identical, accordingly, we shall

repori only the results for the PCG algorithin. The essential results for the cantilever structure

are summarized below.

Model Cantilever type structure
(225 nodes 184 elements)
profile 9990 Non-zero tcrns 3162

-. Static
I)irect

total time 16.77

total time 28.78 , 39 iterations

1)vnamc
(5 time l)irect
steps) total time 32.42

total time 77.52 . 24 to 27 iteralions>F.- "These It'Stills ,irt itch as expected - indicating that the iterative PC(' algorithm requires more

solution effort (measured in CPU time) ihan a= direct solution. The only redeeming feature forK this example is the reduced storage requirements for the stiffness matrix (3162 words instead of

[..Ml . . . -
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9990 word,,). AccordinglN., it* one had access to a very small conmputer it is conlceivable thiat thc

PCG algorithm would be more effective since it could greatly reduce the number of calls to

backing storage. On the otherhand, with access to a virtual memory machine the direct solu-

" tion is to be preferred.

Example 2. Cylindrical Structures

As a second example we consider a cylindrical structure subjected to end loadings. Two

different meshes are considered to illustrate the performance of the PLM algorithm under mesh

refinements. The material is again linearly elastic and both static and dynamic loadings are con-

sidered. The lirst mesh consists of 231 nodes and 200 4-node isoparametric elements (type

!FLMTO1). while the refined mesh consists of 496 nodes and 450 elements. The meshes are

showvn in I igures 2. and 3. Results for the analyses are summarized below.

Model: Small Cylinder Structure
(231 nodes 200 elements)
profile 17485 Non-zero terms: 3345

Static
Direct

total time: 22.50
PCG

total time: 30.63 <39 iterations>

Dynamic
(15 time )irect
steps) otal time: 83.32

P('(;
0 total tinc: 232.75 <, 25 to 27 iterations>

'U...

L',-
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Model: Large Cylinder structure
(496 nodes 450 elements)
profile 57280 Non-zero terms: 7570

Static

total time: 71.82
PCG

total time: 149.48 < 140 iterations>

Dynamic
(5 time Direct
steps) total time: 119.73

PCG
total time: 230.37 <31 to 39 iterations>

Once again the direct solution is more efficient in CPU, however the storage requirements for

the PLM (or PCG) method are significantly less than the direct method. Note that the number

of terms is almost directly proportional to the number of nodes (indeed for a regular mesh of

4-node quadrilateral elements the number of nonzero terms in any column is 10 or less).

whereas for the direct method the number of terms within the nonzero profile of the matrix is

almost proportional to the number of nodes squared! The other significant fact in this example

is the number of iterations required to solve the dynamic problem is significantly less than that

required for the static loading. Furthermore, for the dynamic loading the number of iterations

required to solve the problem increases very little with increased problem size.

Example 3. Three Dimensional Structures
I

In order to assess the performance of the PCG algorithm on three dimensional problems

we have considered the loading on a compact block of 8-node brick isoparametric elements.

Two different meshes with linear elastic material properties have been considered. The first

* '. .mesh consists ol 64 elements which are arranged in a regular cube with 4 elements onl a side

1 ho, mesh has 12S nodes with 21795 words required to store the nonzero profile for a direct

solution ,ind only 7455 words required for the PCG method. For the dynamic loading case, this

problem produces the first PCG results which are more efficient than a direct solution. The

results are stimmarized below:
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Model: 4 X 4 X 4 solid structure
(125 nodes 64 elements)
profile 2 1795 Non-zero terms: 7455

Static
Direct

total time: 46.65
PCG

total time: 201.49 < 187 iterations>

Dynamic
(4 time Direct
steps) total time: 93.18

PCG
total time: 79.13 <25 to 27 iterations>

%W In order to assess the improvement in performance we constructed a larger problem by subdi-

viding the mesh to form a cube with 8 elements on each edge. Accordingly, the mesh now

contains 512 8-node brick elements with a total of 729 nodes. The nonzero profile increases

dramatically to 469,071 words whereas, as before, the number of nonzero terms in the

compressed profile only increases proportionally to the number of nodes to 60,903 words. The

ratio of solution times for the dynamic loading case increases even more for this case, as sum-

marized below- moreover, even the static loading case now requires less CPU for the PCG

method than that of the direct solution.

Model: 8 X 8 X 8 solid structure
(729 nodes 512 elements)
profile 469071 Non-zero terms: 60903

Static
Direct

= total time:1585.23
. PCG

total time: 1145.29 < 130 iterations>

Dynamic
(4 time Direct
,steps) total time:2070.32

PCG
iotal lime 320.83 < 5 and 6 iterations>

[hi, example tIllustratce, the type of improvements which should be attained for all large three

p-.-
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dimensional applications. T'he size of prohiem 'we have conSidered Is quite small (indeed even

the largest mesh we could consider is only, marginally acceptable for simulating ver% simple

* . geometries) and is limited primarily, by the fact that we utilized a VAX 11/780 Coniputcr. In

* - double precision arithmetic we required over 4 megabytes of dimensioned memory to solve the

problem. We fully anticipate that applications to larger problems on faster ane larger computersa

can achieve the same level of improvement we have indicated here.

Example 4. Nonlinear Material Response - Two Dimensional Application.

In order to test the performance of the PLM algorithm in a nonlinear application, we con-

sidered thie elastic-plastic static response of' a plane strain strip with a hole. The mesh is shown

In Figure 4. andi the spread of' plastic zone at different load steps in Figure 5. The problem was

* solved using both direct solution and the PL.M method and utilized the consistent tangent for-

mulation developed in [12). This formulation ensures a quadratic asymptotic rate of' conver-

- - gence w~hen used with a full Newton method. The overall solution time for the PLM method

was Picater than the direct solution, in accordance with results obtained for Examples I and 2.

The PLM4 algoriihm performed well, however, and showed no loss in performance with

* . increased plastic deformations. Accordingly, we fully expect that the solution of nonlinear

three dimensional problems will be more efficient with the PLM method than a ,olution

- . achieved using at direct solution of the algebraic equations.

.

.o
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9. (omparison of (G lobal and Element by Fhement Preconditioned Methods

In order to indicate the number of operations in an element-by-element (EXE) method

compared to the global preconditioned form with compressed storage of the array we have

constructed a table to indicate the number of operations in a single iteration of each meth-

od. For the element-by-element method we assume a second order accurate double pass

method (e.g., see 181). The results are summarized in the table for Examples 1, 2, and 3

cited above.

-txample Mesh Oiperations per Iteration

" Elmt PCG/PLM X

" 184 12.648 23,552

2 200 13,380 25,600

2 450 30,280 57,600

3 1 64 29,820 73,728

3 512 243,612 589.824

The difference in the number of operations is due to the fact that each degree-of-freedom in a

mesh is associated with more than one element. Indeed, on the average, the above table indi-

cates that there is a savings in number of operations by a ratio of about 1.8 to 2.5 for the

PC(i/PLM algorithms in comparison with an element-by-element algorithm Thus, an

element-by-element method must converge in about half as many steps in order to he -is

efficient a. the PC(j/PLM methods. Our previous experience indicated that element precondi-

tioning never converged in fewer steps that the global preconditioning method-, consequiently.

we believe that the current implementation oflers considerable savings over element-by-

element methods. Fle final proof of this assertion must. however, a ail considerable numeri-

,. .' cal testing of various implementations for iterative methods.

S--------------------. .
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Appendi% A. Listing of Compact Stiffness Construction.

The lull description of the algorithm to construct the compact storage of the stiffness is
described in: "An Algorithm for Assembly of Stiffness Matrices into a Compacted Data Struc-
ture," by B.'Nour-Omid and R. L. Taylor, Report No. UCB/SESM 84/06, Structural Engineer-
ing and Structural Mechanics, University of California, Berkeley, May 1984. The listing fol-

lows:

SUBROUTINE ELCNT(NUNP,NUMELNEN,NENI . IX, IC)
DIMENSION IX(NENI,I),IC(1)

C
C INPUT
C NhVMCP TOTAL NO OF NODES IN THE MESH
C NM7MEL TOTAL NO. OF ELEMENTS IN THE MESH
C NEN MAX NO. OF NODES PER ELEMENT
C NENI DIMENSION OF IX ARRAY
C IX ELFMENT CONNECTIVITY ARRAY
C
C OUTPUT
C IC ARRAY OF LENGTH NUMNP IT FIRST HOLDS THE ELEMENT DEGREE
C OF EACH NODE, THEN BECOMES A POINTER FOR AN ARRAY THAT
C CONTAINS THE SET OF ELEMENTS CONNECTED TO EACH NODE
C
C COLUNT THE Nl.MBER OF ELEMENTS EACH NODE BELONGS TO

'*" CALL IZERO(IC NU1NP)
DO 1 1 0 N = 1 NUMEL

DO 100 J = tNEN
I , IX(JN)
IF( I GT 0) IC( I) IC( I) + 1

" 0 0 CONTINUE
110 CONTI NIJE

C SET UP POINTERS
C

DO 120 2, NUMNP.!lIC(I -I I C(I 1 1IC( I-I)

120 CONTINUE
C

RETURN
END

SUBROUTINE CASSEM(D,A,B,SP,JMOLE,IRCW,LDIDNSTNEL,AFLBFL)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
LOGICAL AFL,BFL
DIMENSION D(I) ,A( !) .B( I), S(NST, 1),P( !) , JCOLE( ) ,IR W( I ) ,LD( )

I .ID( I)
* C

C C(IMPACT ASSEMBLY OF PROFILE MATRIX

Do 200 J I NEL
N I'D( J)
IF ( AIL AND N GT I )THEN

DO t150 I 1, NL
K I,D(I)
IF ( K GT 0 AN) K IT N )THEN

INZ .= INZA( JCOLE(N- I ) 1 ,JCOLE(N), IRCW,K)

A(INZ) -- A(INZ) f S(i,J)
END IF

I 50 CONT I NUE
END IF

C ASSEMBLE THE DIAGONAL
IF ( N GE. I ) THEN

, IF ( AFL ) D(N) - D(N) + S(JJ)
C ASSEMIE THE tOAD IF NECESSARY

IF ( HFIL ) H(N) -- (N) -+ P(J)
N' END IF

200 CON71NUE
RETURN
END



SUBROUTINE (XO4'RO(NMPNUMEL,NEN,NENI NDF, IX, ID, IC IRaWVIELC,
1 JCOLEKP)

CDIMENSION IX(NEN1 .1),ID(NDF, I), IC(i), IRCW( i), IELC( 1), JCOLE,( )

C FOR (NUMNP,NUMEL,NEN.NENI,IX,]C) SEE SUBROUTINE ELCNT
C. INPUT
C NDF NUMBER OF UNKNCOiM'S AT EACH NODE

C ID ACTIVE UNKNCMWJS AT EACH NODE.4.C. ., OUTPUT
c IELC HOLDS THE SET OF ELEM(ENTS CONNECTED TO EACH NODE
C I ROW ROW NUMBER OF EACH NONZERO IN THE STIFFNESS MATRIX
C JCOLE END OF ENTRIES IN IRON FORM A GIVEN COLUMN
C
C ... FIND ELEMENTS CONNECTED TO NODES

CALL IZERO (IELC.IC(NN P))
1D 230 N I NUMEL

DO 220 J -- INEN
I IX(J.N)
IF CI GT 0 ) THEN

200 IF IELC(KP) EQ 0 TOGO TO 210
Kil = KP-I

GO TO 200
R210 IELC(KP) NF N

END IF
220 CONT INUE
230 CONTINUE
C
C. SET UP CMPRESSED PROFILE POINTERS
C

KP 0
NEP =

DO 30 N--= I ,NUMLP
NE =IC( I)
DO 340 1- I,NDF

NEQ =ID( I I I)
IF ( NEQ GT 0) THEN

JCOLE(NEQ) KP
.7 KKPO KP + I

IF ( NEP LE NE ) THEN
DO 330 N NEPNE

NN -1 IELC(N)
DO 320 J I ,NEN

K -IX(INN)
DO 310 JJ ,NDF

NEQ3 = ID(JJK)
IF (NEQJ GE. NEQ OR NFQJ .LT 0) Go T'O 31o

C CHECK TO SEE IF NODE ALREADY IN LIST

C

IF ( KPO LE K ) THEN
DO 300 KK = KPOKP

IF( IRO(KK) -EQ NEQJ GTGO TO 310
.' 300 CONTINUE

END IF
KP O KP + I
IRM(KP) NEQJ

. 310 CONTI NUE
D320 CONTINUE

330 CONTINUE
JC-OLE(NFQ) KP

END IF
END IF

.340 CONTINUE
NEP N NE (,

350 CONTINUE
* RETURN

END

"'.* KP KP+
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INTEGER FUNCTION INZA(NI,N2,IRM',K)
DIMENSION IROvV(1)

C... FIND THE TERM FOR THE ASSEMBLY
-~ C

DO 100 N = NI ,N2
IF ( IROVV(N) EQ K )THEN

INZA = N
RETURN

END IF
100 CONTINUE
C. ERROR IF LOOP EXITS

.4- STOP
* END

SUBROUTINE IZERO(IA,NN)
DIMENSION IA(NN)
DO 100 N = I ,NN

IA(N) = 0
100 CONTINUJE

,j. R ETURN
* END
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% Figure 5. f'crforaLed strip. Elastic-plasLic in Lcrracc?
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